Help Aleteia continue its mission by making a tax-deductible donation. In this way, Aleteia's future will be yours as well.
*Your donation is tax deductible!
One challenged the idea that the earth was at the center of the universe. Another developed the theory of the Big Bang. One provided the foundation of modern genetics. The other was one of the greatest seismologists of his day. They were all great scientists as well as faithful Catholics. All but one were priests. One held dual doctorates in theology and physics. Here are five scientists who transformed their disciplines, revolutionized our understanding of the world, and demonstrated the harmony of faith and science in their works.
Nicolaus Copernicus
Born in 1473 in present-day Thorn, Poland, Nicolaus Copernicus was headed for a career in medicine and law when he discovered his passion for astronomy. He would go on to become one of the great figures of the Scientific Revolution, remembered for challenging the traditional geocentric model of the universe in which the earth was at the center. Instead, Copernicus proposed a sun-centered, or heliocentric, model. His ideas were presented in his book, On the Revolutions of the Heavenly Spheres, published in 1543, the year that he died.
Copernicus was a true Renaissance man. Despite his interest in astronomy, he eventually obtained doctorates in both medicine and law. He earned a living as a Church canon, managing the properties and finances. He also translated the works of the 7th-century Byzantine historian Theophylact, wrote a treatise on money, and practiced medicine on the side.
He came from a devout Catholic family. Two brothers become clerics, one sister entered the Cistercian order, and the family was in the Third Order of St. Dominic, according to the Catholic Encyclopedia. While other scientists of his era would run afoul of the Church, Copernicus was on good terms with ecclesiastical authorities. He addressed the preface of On the Revolutions to Pope Paul III. He wrote, “I am aware that a philosopher’s ideas are not subject to the judgment of ordinary persons, because it is his endeavor to seek the truth in all things, to the extent permitted to human reason by God. Yet I hold that completely erroneous views should be shunned.”
Even as he challenged many of the reigning orthodoxies of his day, Copernicus remained respectful for the authority of the Church. As the Catholic Encyclopedia notes, “What is most significant in the character of Copernicus is this, that while he did not shrink from demolishing a scientific system consecrated by a thousand years’ universal acceptance, he set his face against the reformers of religion.”
His book was briefly added to the Church’s Index of Prohibited Books in 1616 amid the Galileo controversy, but it was removed within a few years after some minor corrections had been made to just 10 sentences, describing heliocentrism as a hypothesis rather than fact, according to Catholic Answers. In 2008, his remains were identified and, two years later, they were blessed with holy water and reburied, according to Space.com.
Gregor Mendel
Gregor Mendel was a 19th-century Austrian monk remembered for his experiments with pea plants that led to the discovery of hereditary patterns of traits. By cross-fertilizing plants of different traits—such as height or color—Mendel was able to identify dominant and recessive trains and show that traits were transmitted independently of the others, according to biography.com.
These observations later came to be known as Mendel’s laws, and his accompanying theory was dubbed Mendelism. Although he did not actually discover genes, he hypothesized the existence of gene-like units. His work became the basis for all subsequent studies of genetics. (The word gene was not coined until 1905, decades after Mendel’s death.)
Mendel was born in 1822 to a poor peasant farmer in Austria. After studying physics and mathematics at the University of Olmütz, he entered the Augustinian order at the St. Thomas Monastery in Brno, in the present-day Czech Republic. He was ordained to the priesthood in 1847. He became a substitute teacher but, after failing a certification exam, he went to the University of Vienna, where he studied under physicist Christian Doppler, for whom the Doppler effect is named.
After Vienna, Mendel returned to teaching, becoming the abbot at the high school where he worked. It is also during this period that he started his experiments with the pea plants in the monastery’s garden. He also experimented with bees, but his notes on his results have been lost, according to the Catholic Encyclopedia. He would later present his findings on hereditary traits in a series of lectures at the Natural Science Society in Brno. He died in 1884 and his theories faded into obscurity until their later revival at the start of the twentieth century.
Fr. Giuseppe Mercalli